Меню

Теория огэ по математике теплица



Теория огэ по математике теплица

Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,2 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB. Точки A и B — середины отрезков MO и ON соответственно.

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Переведем 60 см = 0,6 м. Найдем количество промежутков между дугами: 4,5 : 0,6 = 7,5, следовательно, наименьшее количество промежутков — 8. Количество дуг на единицу больше, чем количество промежутков: 8 + 1 = 9.

Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

Площадь участка представляет собой прямоугольник. Вычислим площадь: S = 4,5 · 3,3 = 14,85 м 2 . Округлим до целых: S = 15.

Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

Для начала необходимо посчитать площадь крыши теплицы. Крыша представляет собой прямоугольник со сторонами, равными 4,5 м и 5,2 м. Вычислим его площадь: S = 4,5 · 5,2 = 23,4 м 2 . Передняя и задняя стенка — это два полукруга, то есть вместе они составляют круг. Найдем площадь круга: (заметим, что в данной формуле l — это не длина окружности, а длина дуги теплицы, то есть половина дуги окружности). Поскольку плёнки надо купить с запасом, прибавляем по 10% к уже имеющимся значениям. Получаем: Округляя до целых, получаем 35.

Примечание Решу ОГЭ.

Мы не знаем, как можно купить круглую плёнку для передней и задней частей теплицы (мы бы купили прямоугольную пленку и разрезали её), но за правдивость условий полностью отвечает составитель задачи. Возможно, это задание о других временах или странах.

Источник

ОГЭ 2020 задания 1 — 5 (теплица)

Прочитайте внимательно текст и выполните залдания 1 — 5.

Сергей Петрович решил построить на дачном участке теплицу длиной 4 м. Для этого он сделал прямоугольный фундамент.

Задание 1 (ОГЭ 2020)

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решение: Длина теплицы составляет 4 м = 400 см. Рассчитаем количество дуг для теплицы, соблюдая условие: расстояние между соседними дугами меньше или равно 60 см. Разделим 400 на 60. Получится 6 дуг и в остатке 40 см. Учитывая две крайние дуги, получается:6 + 2 = 8 (дуг).

Ответ: 8.

Задание 2 (ОГЭ 2020)

Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продается в упаковках по 6 штук?

Решение: Из условия задачи имеем, что грядок в теплице планируется 3. Дорожек будет 2. Длина дорожки совпадает с длиной теплицы, то есть 4 м = 400 см. Ширина дорожки — 40 см. Найдем площадь двух дорожек. 2 * 40 * 400 = 32000 (кв. см).

Площадь одной плитки: 20 * 20 = 400 (кв. см).

32000 : 400 = 80 (штук) плиток нужно купить для двух дорожек.

80 : 6 = 13 (остаток 2).

Понадобится 13 + 1 = 14 упаковок плитки.

Ответ: 14.

Задание 3 (ОГЭ 2020)

Найдите ширину теплицы. Ответ дайте в метрах с точностью до десятых.

Решение:

Дуги для теплицы имеют форму полуокружности. Чтобы найти ширину теплицы, нужно достроить окружность и найти радиус окружности OD.

Ширина теплицы AD является диаметром окружности. AD = 2 * OD.

Длина дуги теплицы равна 5 м и вычисляется по формуле П * OD (это длина полуокружности).

OD = 5 : 3,14 = 1,6 (м).

AD = 2 * OD = 2 * 1,6 = 3,2 (м).

Ответ: 3,2.

Задание 4 (ОГЭ 2020)

Найдите ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятых.

Решение: Ширина теплицы 3,2 м = 320 см. В теплице есть 2 дорожки по 40 см и три грядки. Пусть ширина узкой грядки х см, тогда широкой грядки — 2х см.

Составим уравнение 2х + х + х + 2 * 40 = 320 и решим его.

х = 60 (см) — ширина узкой грядки.

Найдем ширину центральной грядки (широкой). 2х = 2 * 60 = 120 (см).

Читайте также:  Урожайный сорт перца для теплиц самый сладкого

Ответ: 120.

Задание 5 (ОГЭ 2020)

Найдите высоту входа в теплицу. Ответ дайте в сантиметрах.

Чтобы найти высоту входа в теплицу,нужно рассмотреть прямоуголный треугольник OC1A. Применив теорему Пифагора, вычислим высоту CC1 теплицы.

По условию AB = BO = OC = CD = 320 см : 4 = 80 см.

ОС1 = OD = 160 см — радиусы.

По теореме Пифагора имеем: СС1 = 80√3 см = 136 см.

Ответ: 136.

Подробный ОГЭ 2020 — земледелец устраивает на склонах гор терассы — задания 1 — 5.

Источник

ОГЭ-2020 поматематике: задача про теплицу

В 2019-2020 учебном году выпускники 9 классов будут сдавать ОГЭ по обновлённым заданиям. Представляем вам вариант тренировочной работы по математике в формате ОГЭ от СтатГрада (4 февраля 2020 года). Рассказываем, как работать с новыми заданиями про теплицу.

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,2 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB . Точки A и B — середины отрезков MO и ON соответственно.

1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решение:

Решать подобные задания лучше наглядным способом, то есть нарисовать предварительно дугу и делать на ней необходимые пометки.

Ответ: 9.

2. Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

Решение:

Длину МN необходимо искать, исходя из дуги, используя формулу длины окружности. Поскольку MN — это полуокружность, то ее длина равна πR.

Ответ: 3,3

3. Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

Решение:

Площадь участка внутри теплицы представляет собой прямоугольник, и его площадь равна MN × NP.

S=520/157 × 4,5= 2340/157=14,9. При округлению получаем 15.

Можно взять ответ в 3,3 из предыдущего задания для решения.

S=3,3 × 4,5=14,85. При округлении тоже получаем 15.

Ответ: 15.

4. Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

Решение:

Для начала необходимо посчитать площадь крыши теплицы. Она представляет собой прямоугольник со сторонами, равными 4,5 и 5,2.

Остаётся посчитать площадь двух полуокружностей (перед и задняя часть теплицы). Вместе это одна окружность — значит, можно не считать площадь 2 раза.

S стенок=3,14 × (260/157)в квадрате=314/100 × 260/157 × 260/157=1352/157

К данной площади необходимо добавить 10%, поскольку плёнки надо купить с запасом. Прибавляем по 10% к уже имеющимся цифрам.

Складываем и округляем. Получаем примерно 35 метров плёнки.

Ответ: 35.

5. Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

Решение:

Задача геометрическая: нам надо представить, что перед нами равносторонний треугольник.

Итак, перед нами равносторонний треугольник СOD. Найдя его высоту, мы найдём высоту входа в теплицу. Будем использовать формулу высоты равностороннего треугольника. Сторона треугольника COD равна радиусу окружности, которую мы уже знаем (260/157).

h=1,40. Округляем до 1,4.

Ответ: 1,4.

Ваш ребёнок — школьник 1-11 класса? Вы учитель? Отлично! Мы пишем для вас. Узнавайте от нас первыми новости образования, актуальную информацию об экзаменах и просто полезные советы. Кнопка подписки прямо под постом!

Источник

Как легко решить ОГЭ? Задачи с теплицей

Задача о теплице, входит в первые пять заданий огэ по математике, и является практико-ориентированной задачей. Сложность данной задачи заключается в том, что в 5 задании требуется найти приближенное значение арифметического квадратного корня, и попасть в интервал ответов.

Вот текст задачи:

По этому тексту, нужно ответить на 5 вопросов.

1) Какое наименьшее количество дуг, нужно нужно заказать, чтобы расстояние между соседними дугами было не более 70 см.

Из первого предложения текста задачи, мы узнаем, что длина теплицы составляет 6 метров. Поэтому, первым делом находим количество интервалов, между дугами.

Теперь найдем, сколько будет дуг. Количество дуг = количество интервалов +1 = 9+1 = 10 дуг. Ответ 10

Читайте также:  Каркас для парника садовый гуру

2) Сколько упаковок плитки необходимо купить для дорожек между грядками, она продается в упаковках по 14 штук?

Для этого вопроса, информация в тексте задачи дана в последнем предложении «Между грядками будут дорожки шириной 50 см, для которых необходимо купить тротуарную плитку размером 25х25»

Поскольку у нас ширина дорожки 50 см, а ширина плитки 25 см, то в ширину дорожки можно уложить 2 плитки. Длина у нас 6 метров, что составляет 600 см, поэтому в длину уместится 24 плитки. Тогда во всей дорожке будет 48 плитки. а в двух дорожках 96 штук.

Расчет количества упаковок приведен ниже.

3) Найдите ширину теплицы. Ответ дайте в метрах до сотых.

Ширина теплицы — это отрезок АD. Поскольку теплица состоит из дуг, то АD- это диаметр окружности.

Диаметр окружности связан с длиной окружности следующей формулой:

В этой формуле, L-длина окружности, D- диаметр окружности, «пи»=3,14

Длину окружности, найдем из следующей информации: » . металлические дуги в форме полуокружности длиной 5,53 метра. «

Поскольку известна длина полуокружности — 5,53 м, то длина окружности равна:

Из этих расчетов получаем, что ширина теплицы (с округлением до сотых) равна 3,52

4) Найти ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте до десятков, с точностью до десятков.

Для ответе на этот вопрос, сделаем схематический чертеж:

В этой задаче, за Х взяли ширину узкой грядки. Тогда широкая грядка будет 2Х. В задаче у нас две дорожки, что показано на схеме, которые составляю по 50 см.

По схеме составим уравнение:

Поскольку в задаче написано условие, что результат нужно округлить до десятков, поэтому получаем ответ 130.

5)Найти высоту входа в теплицу. Ответ дайте в сантиметрах.

Для расчета высоты теплицы, нам необходимо сделать дополнительные построения. Проводим ОС1. Получаем прямоугольный треугольник, ОС1С. Дальше по теореме Пифагора, выразим СС1. Для этой задачи, покажу три разных варианта завершения задачи.

При таком решении, получаем неизвлекаемый корень из 3. На экзамене, хорошо, что хоть кто нибудь вспомнит, что примерно он равен 1,7. Но такого значения не достаточно, поскольку мы получаем, что высота входа равна 149,6. Но такой ответ нас не устраивает, поскольку верный ответ находится в интервале от 150-160 см

Поэтому в этой задаче, чем точнее ответ, тем больше вероятность, что ответ будет не верный, не попадете в интервал правильного ответа.

В этом варианте, мы не будем раскладывать числа до последнего множителя, а будем раскладывать число на множители таким образом, что бы получилось приближенное число из таблицы квадратов. В этом случае, 23232 можно поделить на 16 (признак делимости на 4, если последние два числа делятся на 4)

Как видите, оба ответа, 152 и 156 подходят под наш интервал решения.

Третий вариант: воспользуемся канадской формулой вычисления приближенного значения квадратного корян.

Как видим, эту формулу. так же можно использовать для решения этой задачи.

Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Источник

Задачи на теплицу из ОГЭ-2021 по математике — кажутся не по силам многим 9-классникам

# хакнем_математика 👈 рубрика, содержащая интересный, познавательный контент по математике как для школьников, так и для взрослых 🥳

Продолжаем готовиться к ОГЭ по математике. В этой статье рассмотрим решение задач «с теплицей». В нашем канале мы уже публиковали задачи № 1 -5 из ОГЭ «на шины», «на мобильную связь», «на ОСАГО» и вот «теплицы». И каждый раз читаю комментарии вроде: «зачем?», «кому это надо?», «где пригодиться?», «да и вообще это не математика».

Так вот, как раз эти задачи о том — «где может пригодиться математика»! Это задачи практико-ориентированной направленности. А кто-то наоборот говорит: «И это экзамен для 9 –го класса?!», — намекая на слишком простые задания.

К сожалению, практика показывает, что именно такие задачи хуже всего решают 9-классники, им проще решить уравнения, неравенства, теорию вероятности и др. задачи.

Прежде, чем решать задачи, внимательно прочитайте условие, выпишите все величины и формулы, которые могут понадобиться.

NP = 4,5 м = 450 см — длина теплицы;

Длина дуги MCDM ( длина полуокружности) = 5,2 м — длина металлической дуги;

Читайте также:  Теплица с автоматическими форточками своими руками

Напомню, что формула для вычисления длины окружности С = 2πR = = Dπ , где R — радиус, D — диаметр (в данном случае, D = MN — ширина теплицы).

Задание 1.

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Суть задачи в том, что нужно длину теплицы NP разделить на промежутки (отрезки) длиной не более 60 см. Поэтому всю длину 450 см мы делим на 60 см:

450 : 60 = 7,5 частей (берём 8 частей).

Внимание: основная ошибка в том, что ребята ошибочно думают, что это и есть количество дуг, но это количество отрезков. Посмотрите на рисунок ниже — дуг на 1 больше, включая крайние дуги.

Задание 2

Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

1) Из условия задачи мы отметили, что MN = D (диаметр окружности), C = Dπ, следовательно, чтобы найти диаметр D, необходимо D = C / π

2) По условию, 5,2 м — длина полуокружности, следовательно, вся длина C = 5,2 × 2 = 10,4

3) D = 10,4 / π = 10,4 / 3,14 ≈ 3,312 ≈ 3,3 (округлили до десятых).

Задание 3

Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

Как следует из условия, фундамент для теплицы имеет форму прямоугольника, таким образом, для того, чтобы найти площадь внутри теплицы, нужно найти площадь прямоугольника MNPK (см. рис.):

Источник

ОГЭ-2020 поматематике: задача про теплицу

В 2019-2020 учебном году выпускники 9 классов будут сдавать ОГЭ по обновлённым заданиям. Представляем вам вариант тренировочной работы по математике в формате ОГЭ от СтатГрада (4 февраля 2020 года). Рассказываем, как работать с новыми заданиями про теплицу.

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,2 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB . Точки A и B — середины отрезков MO и ON соответственно.

1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решать подобные задания лучше наглядным способом, то есть нарисовать предварительно дугу и делать на ней необходимые пометки.

2. Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

Длину МN необходимо искать, исходя из дуги, используя формулу длины окружности. Поскольку MN — это полуокружность, то ее длина равна πR.

3. Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

Площадь участка внутри теплицы представляет собой прямоугольник, и его площадь равна MN × NP.

S=520/157 × 4,5= 2340/157=14,9. При округлению получаем 15.

Можно взять ответ в 3,3 из предыдущего задания для решения.

S=3,3 × 4,5=14,85. При округлении тоже получаем 15.

4. Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

Для начала необходимо посчитать площадь крыши теплицы. Она представляет собой прямоугольник со сторонами, равными 4,5 и 5,2.

Остаётся посчитать площадь двух полуокружностей (перед и задняя часть теплицы). Вместе это одна окружность — значит, можно не считать площадь 2 раза.

S стенок=3,14 × (260/157)в квадрате=314/100 × 260/157 × 260/157=1352/157

К данной площади необходимо добавить 10%, поскольку плёнки надо купить с запасом. Прибавляем по 10% к уже имеющимся цифрам.

Складываем и округляем. Получаем примерно 35 метров плёнки.

5. Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

Задача геометрическая: нам надо представить, что перед нами несколько треугольников.

Итак, перед нами равносторонний треугольник СOD. Найдя его высоту, мы найдём высоту входа в теплицу. Будем использовать формулу высоты равностороннего треугольника. Сторона треугольника COD равна радиусу окружности, которую мы уже знаем (260/157).

h=1,40. Округляем до 1,4.

Хотите видеть в ленте своих соцсетей ещё больше наших статей про ОГЭ? Добавляйтесь в друзья в наших пабликах:

Источник